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Abstract. Lie theory of transformation groups is applied to the study ofλ−ω reaction-diffusion
systems in two-dimensional media. Our study proves that they are invariant with respect to a
five-parameter symmetry group. Multiple types of invariant solutions with physical interest are
possible, and some of them can be found in the literature applied to particular models.

1. Introduction

Nonlinear reaction-diffusion equations have been widely studied throughout recent years.
These equations arise naturally as description models of many evolution problems in the
real world, as in chemistry [1], biology [2], ecology [3], etc.

As is well known, complex behaviour is a peculiarity of systems modelled by reaction-
diffusion equations, and the Belousov–Zhabotinskii reaction [4–6] provides a classic
example.

Reaction-diffusion equations have been investigated for certain boundary and initial
conditions and in most cases explicit solutions cannot been found.

This paper deals with the application of Lie group theory to nonlinear reaction-diffusion
equations. Although group analysis of differential equations has been applied a great deal
in many fields of mathematical physics [7–11], much less has been applied in connection
with problems related to reaction-diffusion models. We think that the application of these
techniques to systems of reaction-diffusion equations may help to elucidate many types of
solutions, especially for models which possess the appropriate symmetries.

We have selected for investigation the denominatedλ − ω models, introduced some
years ago by Koppell and Howard [12], which have been widely used in prototype studies
of reaction-diffusion processes. Their importance lies in the fact thatλ − ω systems arise
naturally as the dominant part in the asymptotic analysis of many general reaction-diffusion
systems [13]. Spiral wave solutions of particularλ − ω systems have been investigated,
for example, by Greenberg [14], Hagan [15] and Kuramoto and Koga [16]. Many other
solutions are also known and the list of references is extensive.

We show that theλ − ω systems in two-dimensional media are invariant with respect
to a five-parameter symmetry group. The invariance properties give rise to multiple types
of solutions and to thereduced equations, which are essential in the study of bifurcating
solutions applied to particular models.
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2. Lie symmetries andλ − ω reaction-diffusion models

Theλ−ω reaction-diffusion systems with two reactants are described by systems of partial
differential equations (SPDE) of the form

ut = D∇2u + λ(z)u − ω(z)v

vt = D∇2v + ω(z)u + λ(z)v (1)

z = (u2 + v2)1/2

where λ(z) is a positive function ofz for 0 6 z < z0 and negative forz > z0, ω(z)

is a positive function ofz; u = u(x, y, t) and v = v(x, y, t) represent, for example,
concentrations of two chemical reactants which at the same time diffuse through the plane
(x, y). D represents the diffusion coefficient,λ(z)u−ω(z)v andω(z)u+λ(z)v are nonlinear
functions that describe the kinetics of the reaction. The spacially homogeneous system, has
a limit cycle solution with amplitudez0 and frequencyw(z0), thus,λ−ω systems have been
proposed as models for chemical or biological systems which exhibit oscillating behaviour
in homogeneous situations.

We have found, using Lie group theory of transformations [8], that this system is
invariant with respect to the five-parameter group which has associated with it the following
characteristics:

Qu = a1ux + a2uy + a3ut + a4 (xuy − yux) + a5v

Qv = a1vx + a2vy + a3vt + a4 (xvy − yvx) − a5u
(2)

where the set{ai}5
i=1 represents arbitrary constants. Every set{ai}5

i=1 is associated to a
one-parameter group of transformations.

Five simple one-parameter groups can be obtained by makingai = 1, i = 1, . . . , 5,

and aj = 0 with j 6= i. We denote each of theses groups byGi , and the associated
characteristics byQu

i andQv
i :

G1 : Qu
1 = ux Qv

1 = vx

G2 : Qu
2 = uy Qv

2 = vy

G3 : Qu
3 = ut Qv

3 = vt (3)

G4 : Qu
4 = xuy − yux Qv

4 = xvy − yvx

G5 : Qu
5 = v Qv

5 = −u.

The characteristics associated withG1, G2 and G3 correspond to translations in the
coordinatesx, y and t , respectively. Those associated withG4 and G5 correspond to
rotations in the planes(x, y) and(u, v), respectively.

Also, we denote byGij the one-parameter groups obtained by makingai 6= 0, aj 6= 0
andak = 0 with k 6= i, j .

It is convenient to change the variables(x, y) to polar variables(r, θ), and (u, v) to
polar variables(z, φ). The characteristics ofG4 andG5 are

G4 : Qu
4 = a4uθ Qv

4 = a4vθ

G5 : Qz
5 = 0 Q

φ

5 = 1.
(4)

In terms of the variables(z, φ), system (1) reads

∇2z + z(λ(z) − |∇φ|2) − zt = 0 ∇2φ + 2∇φ
∇z

z
+ ω(z) − φt = 0. (5)

Let us now consider the general reaction-diffusion systems of the form

F ≡ ∇2u + f (u, v) − ut = 0 G ≡ ∇2v + g(u, v) − vt = 0. (6)
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If these systems are invariant under the groups associated with the characteristics (2),
we can demonstrate that they are of the typeλ − ω.

These systems are invariant with respect toG1, G2, G3 andG4, becauseF andG do
not depend explicitly on(x, y, t). The condition of invariance with respect toG5 is

V5(F ) = 0 V5(G) = 0 (7)

when u is a solution of the system (6). We represent byV5 the prolongation of the Lie
operator forG5:

V5 = −v
∂

∂u
+ u

∂

∂v
+

∑
I

−vI

∂

∂uI

+ uI

∂

∂vI

(8)

whereI is a multi-index referring to the multiple derivatives ofu andv, with |I | > 0.
Then

−∇2v − v
∂f

∂u
+ u

∂f

∂v
+ vt = 0 ∇2u − v

∂g

∂u
+ u

∂g

∂v
− ut = 0. (9)

That is, substitutingut andvt from (6):

−v
∂f

∂u
+ u

∂f

∂v
= −g − v

∂g

∂u
+ u

∂g

∂v
= f. (10)

These equations may be written in the variables(z, φ) as

∂f

∂φ
= −g

∂g

∂φ
= f (11)

so thus

f + ∂2f

∂φ2
= 0 g = − ∂f

∂φ
.

Consequently, the functionsf andg take the form of the kinetics of theλ − ω systems:

f = λ(z)z cos(φ) − ω(z)z sin(φ) = λ(z)u − ω(z)v

g = ω(z)z cos(φ) + λ(z)z sin(φ) = ω(z)u + λ(z)v.
(12)

Thus, we have proved thatλ − ω systems are characterized, among reaction-diffusion
systems, by their symmetry properties. In the next section we show that the study of
solutions invariant with respect to some subgroups of the full symmetry group may be
useful to describe pattern formation.

3. Invariant solutions

Invariant solutions,u and v, for a subgroup of the full symmetry group, i.e. partially
invariant solutions [17], must satisfy system (1) and the characteristic equations

Qu(u, v) = 0 Qv(u, v) = 0 (13)

for some set of the constants{ai}. This requirement imposes special forms to the solutions.
Substitution in system (1) gives rise to the reduced equations, which are PDEs with the
number of independent variables reduced to one.

There exist two types of invariant solutions according to the value of the constanta5.
(i) If a5 = 0, it is possible to change the variables(x, y, t) to new variables(ξ1, ξ2, η),

such that the characteristic equations are

uη = 0 vη = 0. (14)
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Hence, invariant solutions depend only on(ξ1, ξ2). Substitution in (1) leads to a new system
of PDEs with two independent variables.

(ii) If a5 6= 0, it is possible to change variables from(x, y, t) to (ξ1, ξ2, η) such that the
characteristic equations are

αuη + v = 0 αvη − u = 0. (15)

Then

u = z(ξ1, ξ2) cos
(η

α
+ β(ξ1, ξ2)

)
v = z(ξ1, ξ2) sin

(η

α
+ β(ξ1, ξ2)

)
. (16)

That is, invariant solutions are periodic functions with respect toη. Substitution of
z = z(ξ1, ξ2) andφ = (η/α) + β(ξ1, ξ2) in (5) leads to the reduced equations forz andβ.

If a solution is invariant with respect to a two-parameter group, the reduced equations
are ordinary differential equations (ODEs).

In the following a solution invariant with respect to a groupGI will be called aGI

solution. If it is invariant with respect to two groupsGI andGJ , it will be called aGI +GJ

solution.

4. Multiple solutions

In this section we consider solutions invariant with respect to different subgroups.

4.1. Homogeneous solutions

These areG1 + G2 solutions. The reduced equations are

λ(z) − zt = 0 φt − ω(z) = 0. (17)

As λ(z) has a zero with negative derivative inz0, then there exists a stable limit cycle
defined by the equations

u = z0 cos(ω(z0)t + φ0) v = z0 sin(ω(z0)t + φ0). (18)

4.2. Travelling waves

These areG15 solutions, and the characteristic equations take the form

zx = 0 a1φx − 1 = 0. (19)

Then

u = z(y, t) cos

(
x

a1
+ β(y, t)

)
v = z(y, t) sin

(
x

a1
+ β(y, t)

)
. (20)

If in addition they areG35 solutions,

u = z(y) cos

(
x

a1
+ t

a3
+ α(y)

)
v = z(y) sin

(
x

a1
+ t

a3
+ α(y)

)
(21)

which are travelling wavetrain solutions.
The reduced equations are

zyy + z

(
λ(z) − 1

a2
1

− α2
y

)
= 0 αyy + 2αy

zy

z
+

(
ω(z) − 1

a3

)
= 0. (22)
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4.3. Stationary bands

The characteristic equations for the two-parameter groupG15 + G3 are

zx = 0 zt = 0

φx = 1

a1
φt = 0.

(23)

The solutions take the form

u = z(y) cos

(
x

a1
+ β(y)

)
v = z(y) sin

(
x

a1
+ β(y)

)
. (24)

The reduced equations are

zyy + z

(
λ(z) − 1

a2
1

− β2
y

)
= 0 βyy + 2βy

zy

z
+ ω(z) = 0. (25)

4.4. Wave packets

The characteristic equations forG135 solutions are

a1zx + a3zt = 0 a3φx + a1φt − 1 = 0. (26)

A change of variables tox ′ = x − cgt and t ′ = t , wherecg = a1/a3, leads to new
characteristic equations:

a1zt ′ = 0 a3φt ′ − 1 = 0. (27)

The amplitude and phase in the new variables take the form

z = z(x ′, y) φ = �t ′ + β(x ′, y) (28)

where� = 1/a3. The invariant solutions are

u = z(x ′, y) cos(�t ′ + β(x ′, y)) v = z(x ′, y) sin(�t ′ + β(x ′, y)). (29)

We define the complex function

ū = u + iv = z(x ′, y) ei(β(x ′,y)+�t ′). (30)

It is easy to compare this expression with the wave packet travelling in thex-direction:

ū′ =
∫

G(k, y) ei(kx−ω(k)t) dk. (31)

The group speedcg = dw/dk is assumed to be approximately constant in the interval
whereG is significantly different from zero. Thenw(k) = w0 + cgk

′, with k′ = k − k0 for
some arbitrary wavenumberk0 in that interval, so

ū′ =
∫

G′(k′, y) ei(k0x+k′x−w0t−cgk
′t) dk′ = A(x ′, y) eiα(x ′,y) ei(k0x−w0t) (32)

with G′(k′, y) = G(k0 + k′, y), and

A(x ′, y) eiα(x ′,y) =
( ∫

G′(k′, y) ei(k′(x−cgt) dk′
)

. (33)

This expression may be identified with theG135 solutions if

ω0 = k0cg − � α(x ′, y) = β(x ′, y) − k0x
′. (34)
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The reduced equations are

zx ′x ′ + zyy + z(λ(z) − βx ′ 2 − βy
2) + cgzx ′ = 0

βx ′x ′ + βyy + 2βx ′
zx ′

z
+ 2βy

zy

z
+ ω(z) − � + cgβx ′ = 0.

(35)

If the solutions areG2 +G135 invariant, the functionsz andβ do not depend ony, that
is the wavefronts are straight lines.

4.5. Solutions with rotational symmetry

These areG4 solutions, with characteristic equations

uθ = 0 vθ = 0. (36)

4.5.1. Stationary target patterns.These areG4+G3 solutions. The additional characteristic
equations are

ut = 0 vt = 0. (37)

The solutions are of the formu = u(r), v = v(r). The reduced equations are

urr + ur

r
+ uλ(z) − ω(z)v = 0 vrr + ur

r
+ uω(z) + λ(z)v = 0. (38)

4.5.2. Travelling circular waves. These areG4 + G35 solutions, with characteristic
equations

zt = 0 a3φt − 1 = 0. (39)

The solutions are of the form

u = z(r) cos

(
t

a3
+ β(r)

)
v = z(r) sin

(
t

a3
+ β(r)

)
. (40)

The reduced equations are

zrr + zr

r
+ z(λ(z) − β2

r (z)) = 0 βrr + βr

r
+ 2βr

zr

z
+ ω(z) − 1

a3
= 0. (41)

If β(r) is not constant these solutions are travelling circular waves with speedc = −1/a3βr .

4.5.3. Stationary circular waves.If β(r) is a constantβ, thenω(z) must be also constant
with value 1/a3, and the solutions are of the form

u = z(r) cos

(
t

a3
+ β

)
v = z(r) sin

(
t

a3
+ β

)
(42)

which are stationary circular waves.
The reduced equation is

zrr + zr

r
+ zλ(z) = 0. (43)
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4.6. Rotating waves

These areG34 solutions, with characteristic equations

a4uθ + a3ut = 0 a4vθ + a3vt = 0 (44)

which may be written in the variablesθ ′ = θ − �t and t ′ = t , where� = a4/a3, as

a3ut ′ = 0 a3vt ′ = 0. (45)

Then,u = u(r, θ ′) andv = v(r, θ ′). The reduced equations are

∇′u + uλ(z) − ω(z)v + uθ ′� = 0 ∇′v + uω(z) + λ(z)v + vθ ′� = 0 (46)

where∇′ is the nabla operator in the new variables.

4.7. Solutions withSn symmetry

These areG45 solutions. The characteristic equations are

a4zθ = 0 a4φθ − 1 = 0. (47)

Then,z = z(r, t) andφ = (θ/a4) + β(r, t). The solutions are of the form

u = z(r, t) cos

(
θ

a4
+ β(r, t)

)
v = z(r, t) sin

(
θ

a4
+ β(r, t)

)
. (48)

These solutions must be continuous in the plane(x, y), that isu(r, θ, t) = u(r, θ + 2π, t)

andv(r, θ, t) = v(r, θ + 2π, t), so thena4 = 1/n, wheren is an integer. The solutions are
of the form

u = z(r, t) cos(nθ + β(r, t)) v = z(r, t) sin(nθ + β(r, t)). (49)

There aren equations for the curves of constant phase 2π :

θ = −1

n
β(r, t) + 2π

m

n
m = 0, 1, 2, . . . , n − 1. (50)

The reduced equations are

zrr + zr

r
+ z

(
λ(z) − βr

2 − n2

r2

)
− zt = 0 βrr + βr

r
+ 2βr

zr

z
+ ω(z) − βt = 0. (51)

4.7.1. Stationary solutions withSn symmetry. The solutions and reduced equations with
G45 + G3 symmetry have the same form as above, with the condition thatβ and z are t

independent.

4.7.2. Multi-armed rotating spiral waves.These areG45+G35 solutions. The characteristic
equations forG35 are

zt = 0 a3φt − 1 = 0.

Then the solutions are of the form

u = z(r) cos(nθ + �t + β(r)) v = z(r) sin(nθ + �t + β(r)) (52)

with � = 1/a3. The reduced equations are

zrr + zr

r
+ z

(
λ(z) − βr

2 − n2

r2

)
= 0 βrr + βr

r
+ 2βr

zr

z
+ ω(z) − � = 0. (53)

The phase curves rotate rigidly with angular speed�.
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5. Conclusions

Theλ−ω systems are characterized, among reaction-diffusion systems, by symmetry group.
Solutions invariant with respect to different subgroups of the full symmetry group exhibit
many different patterns with physical interest. These solutions have a lower degree of
symmetry than the system, so they are probably the emerging solutions in spontaneous
symmetry-breaking processes. The study of the reduced equations with appropiate boundary
conditions applied to specific models is necessary to delimitate the ranges of the parameter
values, inherent to each model, associated with different types of solutions. We are now
concluding a study relative to a model for the Belousov–Zhabotinskii reaction [18], which
is a λ − ω system.

Appendix. Determination of Lie symmetries

In this appendix we briefly sketch, without technical detail, the method used for obtaining
the characteristics ofλ − ω systems. A complete reference can be found in [8].

A.1. Group of transformations

Let G be a local Lie Group,x = (x1, x2, . . . , xn) the set of independent variables, and
u = (u1, u2, . . . , um) the set of dependent variables, in a space of functionsu = u(x). A
local Lie group of transformations in the space(x, u) is given by the set of equations:

xε = X(x, u, ε) uε = U(x, u, ε) (A1)

whereε is a continuous parameter of a local group,ε = 0 being the value of the parameter
for the identity element. The expression local means that the group properties are valid at
least in some neighbourhood ofε = 0. If the functionsX andU depend not only onx and
u but also on some derivatives, the transformations (A1) have no geometrical interpretation,
and must be seen as transformations in a space of functionsu(x). In this case they are
called generalized transformations.

A.2. Infinitesimals

For every transformation (A1) there is an infinitesimal transformation given by

δx = ξ(x, u)ε δu = η(x, u)ε (A2)

with ε small enough;ξ = (ξ1, ξ2, . . . , ξn) and η = (η1, η2, . . . , ηm) are called the
infinitesimals of the transformation and are given by

ξ =
(

∂X

∂ε

)
ε=0

η =
(

∂U

∂ε

)
ε=0

. (A3)

A.3. Characteristics

The characteristic of the transformation group is defined asQ = η − ξ iui . An equivalent
transformation [8] to (A1) that leaves invariant thex variables is given infinitesimally by

δu = Q(x, u, {ui})ε whereQ =
(

∂U

∂ε

)
ε=0

. (A4)
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This is a generalized transformation which has an equivalent geometrical transformation.
The expression{ui} represents the set of derivatives∂uα/∂xi with α = 1, 2, . . . , m and
i = 1, 2, . . . , n.

We represent by{uI }, whereI = (i1, i2, . . . , in) is a multi-index, the set of derivatives,
given explicitly by the expressions

{uI } → ∂ |I |uα

∂x
i1
1 ∂x

i2
2 . . . ∂x

in
n

α = 1, 2, . . . , m; |I | =
n∑

j=1

ij > 0.

The infinitesimal transformation foruI is given by

δuI = (DIQ)ε

whereDI is the total derivative operator

DI = ∂

xI
+ uI

∂

∂u
+

∑
J

uJ,I

∂

∂uJ

|J | > 0

with

∂

∂xI
= ∂ |I |

∂x
i1
1 ∂x

i2
2 . . . ∂x

in
n

.

A.4. Invariant functions

A function u(x) is said to be invariant if it is left unchanged by the action of the
transformation group, that is∂uε/∂ε = 0, or equivalently

Q(x, u, {ui}) = 0. (A5)

A.5. Symmetry group

A system of partial differential equations,

F(x, u, {uJ }) = 0 (A6)

is said to be invariant under a transformation group if every solutionu is transformed by
the group into other solutionuε , that isF(x, uε, {uε

I }) = 0. The corresponding infinitesimal
condition is

Q
∂F

∂u
+ DI(Q)

∂F

∂uI

= 0 |I | > 0 (A7)

wheneveru is a solution of the SPDE.

A.6. Invariant solutions

Invariant solutions are solutions of the SPDE that are invariant with respect to a symmetry
group. Then they must be solutions of equations (A5) and (A6). When the SPDE models a
physical system, invariant solutions are very often functions that exhibit interesting patterns
with physical interest.
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A.7. Procedure

In order to find a symmetry group of a SPDE we first substitute the partial differential
equations into (A7). The resulting equations are treated as forms in the derivatives ofu,
whose coefficients depend on(u, x, t) and the infinitesimals(η, ξ). After the substitution
we collect together the coefficients of like derivative terms inu and set all of them equal to
zero. The resulting equations are called the determining equations of the group. In practice
these equations are solvable and thus the infinitesimals and characteristics of the group are
determined. The subsequent study is clearly shown in this paper.

A.8. Mathematical packages

These calculations, although not difficult in themselves, are clearly complicated as the order
of the SPDE and the number of equations increase, so a software package for symbolic
mathematics becomes really useful. To our knowledge, the best package for these kinds of
calculations is Macsyma. Programs written by the authors in Macsyma 4.0, running in a
Convex, have been used to obtain the results shown in this paper.
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